Automatic Analysis of Student Drawings in Chemistry Classes
- verfasst von
- Markos Stamatakis, Wolfgang Gritz, Jos Oldag, Anett Hoppe, Sascha Schanze, Ralph Ewerth
- Abstract
Automatic analyses of student drawings in chemistry education have the potential to support classroom teaching. To date, related work on handwritten chemical structures or formulas is limited to well-defined presentation formats, e.g., Lewis structures. However, the large variety of possible illustrations in student drawings in chemical education has not been addressed yet. In this paper, we present a novel approach to identify visual primitives in student drawings from chemistry classes. Since the field lacks suitable datasets for the given task, we introduce a method to synthetically create a dataset for visual primitives. We demonstrate how detected visual primitives can be used to automatically classify drawings according to a taxonomy of drawing characteristics in chemistry and physics. Our experiments show that (1) the detection of visual primitives in student drawings, and (2) the subsequent classification of chemistry- and physics-specific drawing characteristics is possible.
- Organisationseinheit(en)
-
Forschungszentrum L3S
Fachgebiet Didaktik der Biologie
Fachgebiet Didaktik der Chemie
Institut für Didaktik der Naturwissenschaften
Leibniz School of Education
- Externe Organisation(en)
-
Technische Informationsbibliothek (TIB) Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek
- Typ
- Aufsatz in Konferenzband
- Seiten
- 824-829
- Anzahl der Seiten
- 6
- Publikationsdatum
- 26.06.2023
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Theoretische Informatik, Informatik (insg.)
- Elektronische Version(en)
-
https://doi.org/10.1007/978-3-031-36272-9_78 (Zugang:
Geschlossen)